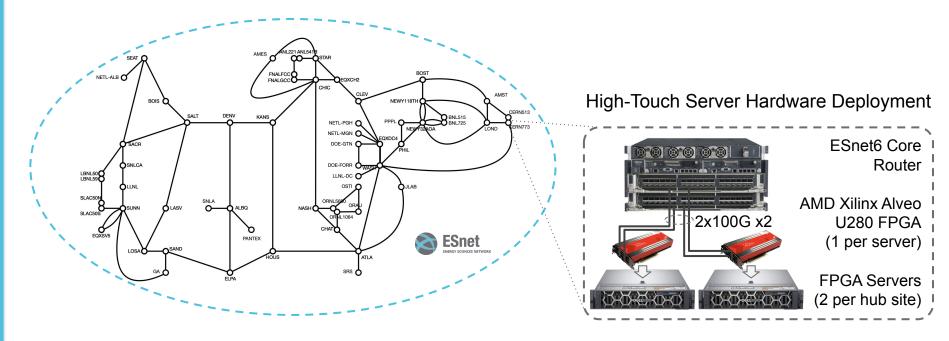


ESnet High-Touch Telemetry Platform

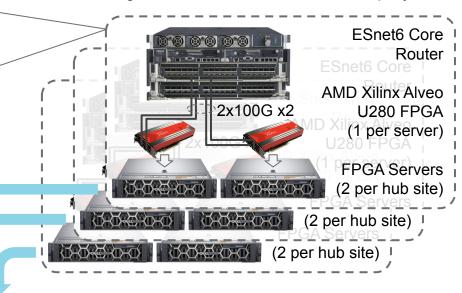

Chin Guok
Chief Technology Officer
Scientific Networking Division
Lawrence Berkeley National Laboratory

4GRP Workshop Limassol, Cyprus Oct 10, 2023

ESnet6 High-Touch Platform Field Deployment

- 42 deployment locations
- Near 100% perimeter coverage*
- 100% packet inspection

ESnet6 High-Touch System Deployment


High-Touch Platform

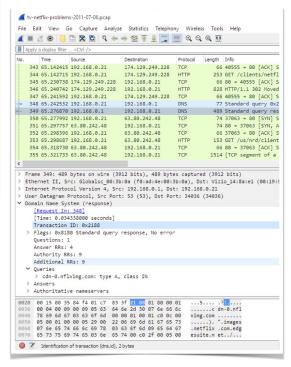
- Router packet mirroring with (128 byte) packet truncation at line rate
- FPGA accelerated data reduction that can process up to 300Mpps
- FPGA 1ns accuracy time stamping
- Kafka based 24/7 streaming central database (data lake)
- PCAP capture of any subset of flows

High-Touch Data Lake

- 2PB Fast SSD + CEPH
- Column-oriented (SQL) database (ClickHouse)
- Built to handle trillions of rows, petabytes of data

High-Touch Server Hardware Deployment

Flexibility in Tool Selection


Jupyter Lab / Pandas

[9]: # Quick preview to see what the data frame looks like df.drop_duplicates(subset='flow_id') dst dport dst_network flow_id 0 104.196.237.25 42948 198.129.224.35 6 2022-02-15T11:09:59.994-0800 198 129 224 0/24 104 196 237 0/24 1 134.79.146.247 34432 45.137.21.208 48138 6 2022-02-15T11:09:59.984-0800 45.137.21.0/24 134,79,146,0/24 2 134 79 25 243 33566 92 63 196 25 47014 6 2022-02-15T11:09:59 974-0800 92 63 196 0/24 134.79.25.0/24 LINDEE 3 198.128.14.236 48690 6 2022-02-15T11:09:59.974-0800 198.128.14.0/24 128.3.18.26 53422 128.55.136.54 27017 6 2022-02-15T11:09:59 964-0800 NERSC 128 55 136 0/24 128 3 18 0/24 166483 128.55.244.94 50264 89.248.168.172 56292 6 2022-02-15T10:20:00.504-0800 NERSC UNDEF 89.248.168.0/24 128.55.244.0/24 131.225.205.56 34749 128.55.224.115 57714 6 2022-02-15T10:20:00.474-0800 **FNAL** NERSC 128.55.224.0/24 131.225.205.0/24 128.55.206.106 6 2022-02-15T10:20:00.404-0800 128.55.206.0/24 112.31.169.97 6 2022-02-15T10:20:00.093-0800 128.55.109.0/24 17 2022-02-15T10:20:00.083-0800 198.129.217.96 57599 173.194.152.170 443 SLAC UNDER 173.194.152.0/24 198.129.217.0/24 86745 86745 rows x 11 columns

Grafana / Stardust

Wireshark

4

SQL CLI

FROM ht.all flows

bn1515-ht1

eaxch2-ht2

slac50s-ht1

bost-ht2

salt-ht2

elpa-ht2

atla-ht2

nash-ht2

atla-ht1

bois-ht2

sand-ht2

bnl515b-ht2

eaxsv5-ht1

anl541b-ht2

slac50n-ht1

anl541b-ht1

eaxsv5-ht2

orn15600-ht2

newy1118th-ht1

lbnl59-ht2

newv1118th-ht2

orn15600-ht1

exporting node,

GROUP BY exporting node

count(*) AS total records

Ouerv id: 3101a6b0-9ae6-4e94-b78c-

exporting node total records

282710771

1104520

1809320

8545951

882130013

1071826

45841556

2835203590

480642

924414

696555

432433

108835837

65303026

2991159948

1189111

721476

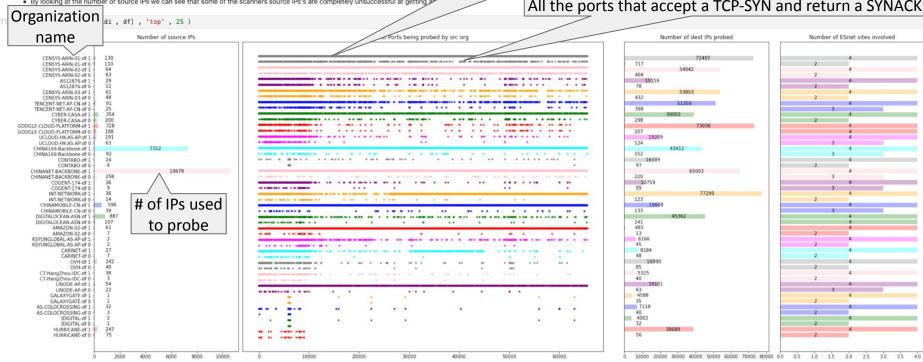
568492

FORMAT PrettyCompactMonoBlock

SELECT

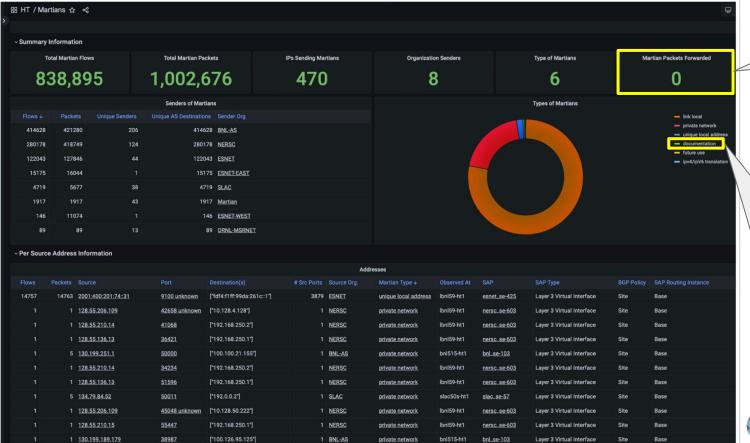
Internet Background Radiation

All the dst ports that get a SYN and no further packets Comparison of probes that generated a bi-directional syn_ack when sent a syn probe


The effectiveness of syn_only probes can be checked against the number of syn_ack responses they generate. In this diagram, we plot the total number of syr hosts, and ports that are successfully enumerated by the scanner

e below, we plot only the probes that got a syn_ack message in response. This provides a measure of

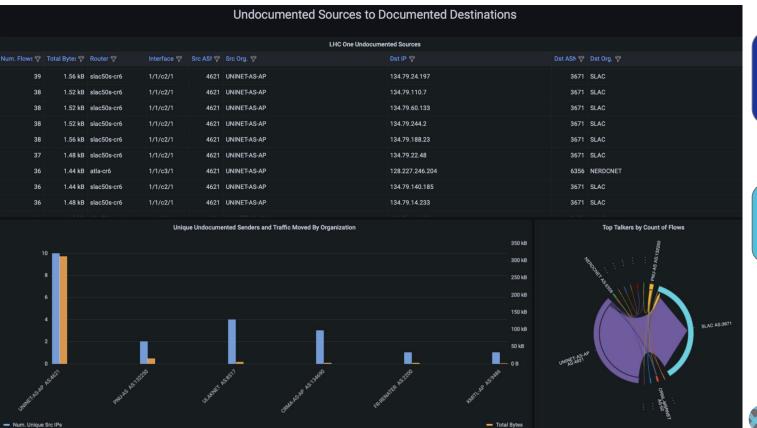
By looking at the Number of IP's probed bar chart, we can see that only a small number of hosts being scanned, are returning any response


• By looking at the number of source IPs we can see that some of the scanners source IPs's are completely unsuccessful at getting

All the ports that accept a TCP-SYN and return a SYNACK

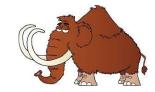
Network Audits - Martians

Bogon filtering at work!


Why do we have "documentation" (e.g., TEST-NET) addresses?

- SONIC Open Source Switches
- Docker Data Center Auto Config

LHCONE Traffic - CRIC Audit



WLCG CRIC Database for LHCONE prefixes (wlcg-cric.cern.ch) **JSON** Query **ESnet High-Touch Data lake** SQL Select * NOT in JSON Query Should be empty set

Network Planning - Flow Volumes

SELECT * WHERE peak rate > 10gbps AND duration > 10secs ORDER BY rate

C	aida_org_name_src	caida org name dst	ip_src	ip_dst	Gbps	hostname_src	hostname_ds
	U-CHICAGO-AS	ARGONNE-AS	192.170.224.134	140.221.68.2	30.037561	scidmz-ps4.scidmz.uchicago.net.	typhoon.pub.alcf.anl.gov
	ARGONNE-AS	U-CHICAGO-AS	140.221.68.2	192.170.224.134	27.532194	typhoon.pub.alcf.anl.gov.	scidmz-ps4.scidmz.uchicago.net
	ESNET	ESNET	2001:400:f010:200::1	2001:400:f010:240::1	26.215328	eqxch2-ps-tp.lhcone.es.net.	fnalfcc-ps-tp.lhcone.es.net
	ESNET	ESNET	2001:400:ee00:20::1	2001:400:ee00:21::1	26.209250	lbnl59-ps-tp.es.net.	lbnl50-ps-tp.es.net
	ESNET	ESNET	2001:400:f010:640::1	2001:400:f010:641::1	26.208939	bnl515-ps-tp.lhcone.es.net.	bnl515b-ps-tp.lhcone.es.net
	ESNET	ESNET	2001:400:ee00:880::1	2001:400:ee00:881::1	26.208344	ornl1064-ps-tp.es.net.	orn15600-ps-tp.es.net
	ESNET	ESNET	2001:400:ee00:221::1	2001:400:ee00:220::1	26.208284	anl541b-ps-tp.es.net.	anl221-ps-tp.es.ne
	ESNET	ESNET	2001:400:ee00:881::1	2001:400:ee00:880::1	26.207954	ornl5600-ps-tp.es.net.	ornl1064-ps-tp.es.ne
8	ESNET	ESNET	2001:400:ee00:601::1	2001:400:ee00:600::1	26.207889	newy1118th-ps-tp.es.net.	newy32aoa-ps-tp.es.ne
9	ESNET	ESNET	2001:400:ee00:881::1	2001:400:ee00:882::1	26.207831	orn15600-ps-tp.es.net.	orau-ps-tp.es.ne
10	ESNET	ESNET	2001:400:ee00:200::1	2001:400:ee00:201::1	26.206976	eqxch2-ps-tp.es.net.	chic-ps-tp.es.ne
11	ESNET	ESNET	2001:400:f010:200::1	2001:400:f010:221::1	26.206912	eqxch2-ps-tp.lhcone.es.net.	anl541b-ps-tp.lhcone.es.ne
12	ESNET	ESNET	2001:400:ee00:200::1	2001:400:ee00:202::1	26.206903	eqxch2-ps-tp.es.net.	star-ps-tp.es.ne
13	ESNET	ESNET	2001:400:ee00:882::1	2001:400:ee00:881::1	26.206468	orau-ps-tp.es.net.	orn15600-ps-tp.es.ne
14	ESNET	ESNET	2001:400:f010:240::1	2001:400:f010:221::1	26.206126	fnalfcc-ps-tp.lhcone.es.net.	anl541b-ps-tp.lhcone.es.ne
15	ESNET	ESNET	2001:400:ee00:200::1	2001:400:ee00:220::1	26.205755	eqxch2-ps-tp.es.net.	anl221-ps-tp.es.ne
16	ESNET	ESNET	2001:400:ee00:240::1	2001:400:ee00:221::1	26.205489		anl541b-ps-tp.es.ne
17	ESNET	ESNET	2001:400:f010:221::1	2001:400:f010:220::1	26.204826	anl541b-ps-tp.lhcone.es.net.	anl221-ps-tp.lhcone.es.ne
18	ESNET	ESNET	2001:400:f010:200::1	2001:400:f010:220::1	26.204172	egxch2-ps-tp.lhcone.es.net.	anl221-ps-tp.lhcone.es.ne
19	ESNET	ESNET	2001:400:ee00:220::1	2001:400:ee00:200::1	26.203990	anl221-ps-tp.es.net.	egxch2-ps-tp.es.ne
20	ESNET	ESNET	2001:400:f010:241::1	2001:400:f010:200::1	26.203445	fnalgcc-ps-tp.lhcone.es.net.	egxch2-ps-tp.lhcone.es.ne
2.1	ECHET	ECHET	2001.400.6010.2211	2001 - 400 - 5010 - 241 1	26 202144		

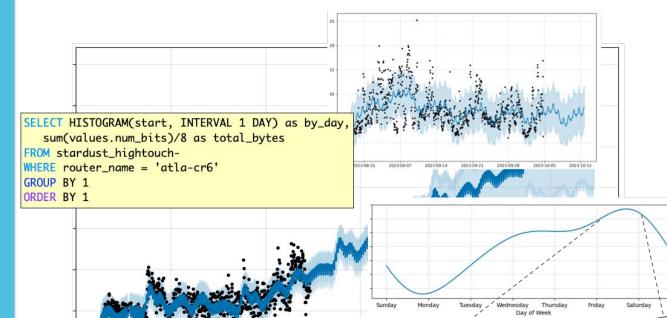
Primarily perfSONAR transfers

Observation

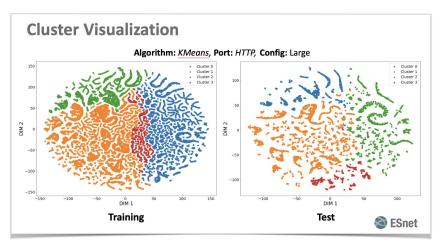
 perf5. NAR traffic appears to be the primary contributor of "large" flows in this dataset.

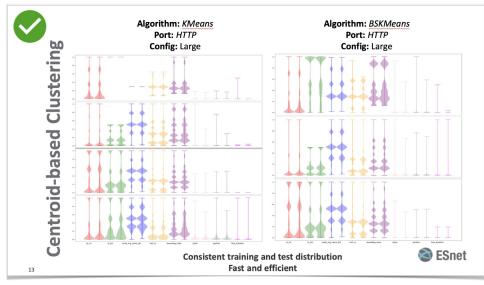
Supposition*

 Large data movement tools (e.g., Globus, etc) utilize massively parallel small flows to reduce the impact of packet loss.



Trend Analysis / (Peak) Capacity Planning


 High-Touch data is exported into existing measurement systems (i.e., Stardust), allow us to leverage existing analysis, but with much higher fidelity


Analysis (for a single router, **atla-cr6**) using hourly aggregates, shows that 17:00 UTC and Fridays are peak demand times.

ML - Clustering / Self Similarity / Prediction

Observation

We are seeing consistent auto clustering over the 24-hr (12 billion) flow data set.

Implications

- We can do capacity planning and prediction without worrying about wild fluctuations.
- We can automate exception/anomaly detection.

Summary

- What problem are we solving?
 Gaining a complete understanding of high-speed network traffic, leading to improved performance and reliability for science workflows.
- How is what we are doing different from what is done today?
 A combination of programmable hardware and software enables custom collection and analysis.
- How does this benefit the user community?
 It helps network and security engineers troubleshoot issues and investigate anomalies, resulting in improved service.
- 4. How can the user community get involved?
 Send email to: hightouch@es.net

Questions...

